Dynamic mechanical properties and constitutive model of photosensitive resin specimens at different temperatures

Author:

Liu TaoORCID,Yin Zhiqiang,Lei Jingfa,Sun Hong,Shen Qiang

Abstract

AbstractIn order to reveal the dynamic mechanical properties of resin-molded parts prepared from photosensitive resin composition at different temperatures, four typical service temperatures (26 °C, 50 °C, 70 °C and 90 °C) were selected, and the mechanical properties of photosensitive resin specimens under quasi-static and high strain rate (1200 s−1, 1500 s−1 and 1800 s−1) loading were tested by universal material testing machine and split Hopkinson pressure bar (SHPB) experimental device. The stress–strain data of the material were obtained. Results show that the stress of photosensitive resin specimens decreases with the increase of temperature under quasi-static and high strain rate loading conditions, reflecting a certain temperature softening effect. Two typical stages of strain softening and strain hardening exist in the quasi-static compression process of the specimens at room temperature, while the specimens only exhibit strain hardening at 50 °C, 70 °C and 90 °C. Under dynamic loading, the elastic modulus, peak stress and peak strain of the photosensitive resin increase with the increase of the strain rate, reflecting an obvious effect of strain rate strengthening. The nonlinear thermo-viscoelastic constitutive model can better describe the mechanical behavior of the material under high strain rates and service temperatures, and the experimental values are in good agreement with the fitted values of the model. The results can provide theoretical model and method support for the design and development of resin-based materials and the optimization of their mechanical properties.

Funder

National Natural Science Foundation of China

Anhui Education Department Excellent Young Talent Support Project

Foundation of Anhui Province Key Laboratory of Human Safety

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3