Annealing effects on structural and photovoltaic properties of the dip-SILAR-prepared bismuth oxyhalides (BiOI, Bi7O9I3, Bi5O7I) films

Author:

Matiur R. MDORCID,Abuelwafa A. A.,Putri Anissa A.,Kato S.,Kishi N.,Soga T.

Abstract

AbstractBismuth oxyhalides are becoming a promising contender for photovoltaic applications due to its non-toxic nature and decent optical properties. This study mainly deals with clarifying the effects of phase transformations on the structure, optical, and electrical properties of BiOI thin film prepared via dip-successive ionic layer adsorption and reaction (SILAR) method at different annealing temperatures ranging from 100 to 400 °C. Therefore, significant phase transformations (i.e., the existence of Bi7O9I3 and Bi5O7I have been confirmed at 300 °C and 400 °C, respectively) appeared in the produced films, which were mainly due to the change of annealing temperatures. The experimental results confirmed that produced films achieved the maximum current density and efficiency and minimum current density and efficiency at 100 °C and 400 °C, respectively. Experimental results were also showed that with increasing the annealing temperature from 100 to 400 °C, the indirect bandgap risen from 1.77 to 2.96 eV while the crystallite size decreased from 17.62 to 12.99 nm. The energy band diagram with electrolyte explained the observed poor electrical properties during the phase transformation. Hence, this result will add positive impacts on the new information on findings for the dip-SILAR-prepared BiOI photovoltaic cells.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3