Norm-based user selection algorithm for single-RF space modulation techniques with geometric mean decomposition based precoding scheme

Author:

Elganimi Taissir Y.ORCID,Alfitouri Feras F.

Abstract

AbstractJoint user selection algorithm and fully digital geometric mean decomposition (GMD)-based precoding scheme is considered in this paper for single radio frequency (RF) space modulation techniques (SMTs), namely, spatial modulation (SM) and space shift keying (SSK) schemes. The objective is to jointly perform the Frobenius norm-based user selection algorithm and design GMD-based precoded SMTs with single-RF chain in order to reduce the cost and the power consumption in multiple input multiple output (MIMO) systems, and to avoid the complicated bit-allocation problem of singular value decomposition (SVD)-based precoding technique. Based on these schemes, the GMD-based precoding transmission carried out in the context of a single-user SMTs can readily be extended to the multi-user (MU) case. Simulation results demonstrate that single-RF SMTs with GMD-based precoding scheme is capable of outperforming SMTs with SVD-based precoding technique. Meanwhile, MU-SMTs with GMD-based precoding scheme provide significant performance gains over the conventional SM- and SSK-MIMO counterparts and single-user SMTs with GMD-based precoding algorithm, which increase the energy efficiency and the reachability using these schemes. Furthermore, better error performance in MU-SMTs with fully digital GMD-based precoding technique is obtained by selecting any number of users. Therefore, MU-SMTs with GMD-based precoding scheme can be effectively used in various 5G wireless networks.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference40 articles.

1. Mesleh RY, Younis Alhassi A (2018) Space modulation transmission and reception techniques. In: Space modulation techniques, 1st edn. Wiley, London, pp 35–83

2. Larsson EG, Edfors O, Tufvesson F, Marzetta T (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195

3. Liu H, Gao H, Yang S, Ly T (2017) Low-complexity downlink user selection for massive MIMO systems. IEEE Syst J 11(2):1072–1083

4. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082

5. Algedir AA, Refai HH (2017) Adaptive D2D resources allocation underlaying (2-tier) heterogeneous cellular networks. In: 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Montreal, QC, Canada, October 8–13

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3