Reassessment of the flexural behavior of high-strength reinforced concrete beams under short-term loads

Author:

Tamayo Jorge Luis PalominoORCID,Garcia Gabriel OrsoORCID

Abstract

AbstractThis work aims at describing the behavior of high-strength reinforced concrete (HSRC) beams under short-term ultimate loads with concrete compressive strengths higher than 50 MPa. A plastic approach besides a cross sectional analysis is employed to primarily trace the nonlinear response of nineteen HSRC simply supported beams for which experimental results are available. This proposed theoretical approach is able to acceptably match the experimental data with minor overestimation of flexural moments. Closed-form expressions to evaluate ductility indexes regarding deflections and curvatures as well as plastic rotation capacities are also proposed herein. Predictions of the National Brazilian Regulation for design of concrete structures NBR6118 in terms of ultimate flexural moments are also computed for comparison. A complete assessment of ductility in which plastic rotation capacities are computed for the studied beams is also given. It is found that the flexural ductility of a member could be increased with the use of high strength concrete. The use of a maximum tension steel ratio to guarantee a minimum flexural of ductility is highlighted.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3