A multiscale dilated convolution and mixed-order attention-based deep neural network for monocular depth prediction

Author:

Xu HuihuiORCID,Li Fei

Abstract

AbstractRecovering precise depth information from different scenes has become a popular subject in the semantic segmentation and virtual reality fields. This study presents a multiscale dilated convolution and mixed-order attention-based deep neural network for monocular depth recovery. Specifically, we design a multilevel feature enhancement scheme to enhance and fuse high-resolution and low-resolution features on the basis of mixed-order attention. Moreover, a multiscale dilated convolution module that combines four different dilated convolutions is explored for deriving multiscale information and increasing the receptive field. Recent studies have shown that the design of loss terms is crucial to depth prediction. Therefore, an efficient loss function that combines the 1 loss, gradient loss, and classification loss is also designed to promote rich details. Experiments on three public datasets show that the presented approach achieves better performance than state-of-the-art depth prediction methods.

Funder

the Opening Fund of Shandong Provincial Key Laboratory of Network based Intelligent Computing

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3