Remote sensing and geographic information system (GIS)-based high-resolution mapping of potential groundwater recharge zones on the hard rock terrains of the Cameroon volcanic line (CVL)

Author:

Yossa Mbohlieu TchaweORCID,Lordon Anatole E. Djieto,Agyingi Christopher M.,Agbor-Taku Junior,Shandini Yves N.,Bessong Crayton Enga

Abstract

Abstract Groundwater is the major water reserve in the present context of global warming-related droughts that appear to be more intense in hard rock terrains. The use of Geographical Information Systems (GIS) and Remote Sensing (RS) technologies are increasingly beneficial to groundwater research, by allowing for low cost and larger-scale high-resolution mapping compared to conventional hydrogeological exploration methods. This study aimed at developing a high-resolution map of potential groundwater recharge (GWRpot) zones for the drought-stricken Banka hard rock terrain, straddling the Cameroon Volcanic Line (CVL). Shuttle Radar Tomography Mission (SRTM)-30m and Landsat 8 satellite images constituted the main data source that was ground-truthed through field mapping and used to produce various thematic GIS layers: geology slope, aspect, land use & land cover, drainage density and lineament density of spatial resolution 16m x 16m. The layers were each attributed a fixed score and weight to groundwater recharge, computed using Multi-Influencing Factor (MIF) and Analytical Hierarchy Process of Multi-Criteria Decision Analysis (AHP-MCDA) techniques. Lastly, a Weighted Overlay Analysis was done using the layers to produce the GWRpot zones for the study area. The resulting map shows that 60% of the study area, covering the south, west-northwest and the north-northeast portions of the map have moderate to very high recharge potentials. This result is particularly useful for groundwater targeting in the area and demonstrates the effectiveness of the method in hard rock terrains where traditional methods have been less efficient in properly delineating groundwater recharge zones. Article highlights Groundwater is generally the safest and most reliable source of water in water scarce environments, and forms when surface water goes into the ground. More areas where water can enter the ground means more chances of getting enough groundwater. Conventional ways of knowing these areas are time consuming and costly, whereas RS and GIS-based methods are less costly and use lesser time. We used the RS, GIS, high-resolution field mapping and statistical methods of blending several factors to produce the potential groundwater recharge zones on a part of the hardrocks of the CVL, that shows 60% of the study area, covering the south, west-northwest and the north-northeast portions of the area have moderate to very high recharge potentials.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3