Author:
Ghosh Arabinda,Ray Anjan Kumar,Nurujjaman Md.,Jamshidi Mo
Abstract
AbstractVariations of load demands, expansion of power system by interconnections among different areas and integration of renewable energy sources bring new challenges for stable, reliable and uninterrupted operations of power systems. In this paper, a control technique is proposed to control and optimize the performances of the three models having importance in the present and future energy systems. These are the output variations of an automatic voltage regulation (AVR) system, frequency variations in a load frequency control (LFC) system of a thermal power plant and frequency variations of a PV integrated thermal power plant. The proposed controller is a particle swarm optimized Ziegler–Nichols (ZN) method based proportional-integral-derivative (PID) controller. A particle swarm optimization (PSO) method suffers from the unavailability of prior knowledge of initial values of parameters. Whereas, the classical ZN method leaves the scope for performance improvements of a system. A rejuvenation to the classical ZN method is proposed by integrating PSO. The combined effect optimizes the voltage and the frequency performances, while ensuring system stability. Additionally, different objective functions inspired from energy industry requirements are considered to demonstrate performance improvements of the systems (e.g. maximum overshoot, steady-state error, settling time). The robustness of the proposed method is demonstrated by considering parametric uncertainty in the system. The proposed method is compared with performances of different controllers (e.g. PI, fuzzy PI, fuzzy PID), different iterative soft computing methods (e.g. pattern search, artificial bee colony, different variants of PSO) and classical optimization method (e.g. linear matrix inequality) considering different objective functions and different load disturbances for the aforementioned models. It is also observed that better performances are obtained using a significantly less number of iterations.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献