Hybrid photo paper-based microfluidic device for colorimetric detection of iodine in salt

Author:

Chong Arechkang,Sriv Tharith,Chey Chan Oeurn,Khan Sovann,Shin Kwanwoo,Soum Veasna

Abstract

AbstractMicrofluidic paper-based analytical devices (µPADs) have gained widespread use in various analytical applications because they are low-cost and suitable for onsite testing. The development of µPADs, including fabrication methods, new materials, and enhancement functionality is crucial to advance their practical application in analytical chemistry. In this study, we introduce a new hybrid paper-based analytical device, the hybrid photo paper-based microfluidic device (hPPMD), which combines a photo paper-based microfluidic device (PPMD) with a µPAD. We conducted a systematic study that detailed hPPMD’s characteristics, including surface properties and fluidic transportation. The hPPMD showed two fluidic transportation behaviors: continuous flow and discontinuous flow at the device junction, depending on the orientation of the device combination. Our hPPMD could increase fluidic flow approximately four times the speed when six layers of guided channels were added. The customized hPPMD was used for colorimetric detection of iodine in table salt, and then the result was quantitatively analyzed using a computer and smartphone with color analysis software. The detection zones of the hPPMD showed a flawless circular color signal. Under optimum conditions, the hPPMD was sensitive enough to detect iodine in salt solutions at various concentrations ranging from 1 to 100 ppm. The developed hPPMD should be a simple and low-cost analytical device for onsite qualitative analysis of the iodine and other chemical contaminants in food and the environment.

Funder

Higher Education Improvement Project

Sweden-RUPP Bilateral Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3