A novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooler

Author:

Turgut Oguz EmrahORCID

Abstract

AbstractThis research study aims to introduce chaos theory into the Manta Ray Foraging Optimization (MRFO) Algorithm and optimize a real-world design problem through the chaos-enhanced versions of this method. Manta Ray Foraging Optimization algorithm is a bio-inspired swarm intelligence-based metaheuristic algorithm simulating the distinctive food search behaviors of the manta rays. However, MRFO suffers from some intrinsic algorithmic inefficiencies such as slow and premature convergence and unexpected entrapment to the local optimum points in the search domain like most of the metaheuristic algorithms in the literature. Recently, random numbers generated by chaos theory have been incorporated into the metaheuristic algorithms to solve these problems. More than twenty chaotic maps are applied to the base algorithm and ten best performing methods are considered for performance evaluation on high-dimensional optimization test problems. Forty test problems comprising unimodal and multimodal functions have been solved by chaotic variants of MRFO and extensive statistical analysis is performed. Furthermore, thermo-economic design optimization of an air-fin cooler is maintained by the chaotic MRFO variants to assess their optimization capabilities over complex engineering design problems. Ten decisive design variables of an air fin cooler are optimized in terms of total annual cost rates and optimum solutions obtained by five best chaotic MRFO algorithms are compared to the preliminary design. A significant improvement is observed in the objective function values when MRFO with chaotic operators is applied to this considered thermal design problem.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3