A case study on the observability of cutting fluid flow and the associated contact mechanics in scaled rough surfaces

Author:

Müller MichaelORCID,Stahl LukasORCID,Arafat RobarORCID,Madanchi NadineORCID,Herrmann ChristophORCID

Abstract

AbstractIn grinding processes, heat is generated by the contact of the grains with the workpiece. In order to reduce damages on the workpiece and the grinding tool, cutting fluids are necessary for most grinding processes. They have the tasks of cooling and lubricating the contact zone and to remove the chips from the contact area. Different types of cutting fluids perform differently regarding these tasks, which can be investigated on a laboratory scale. However, the results of those experiments are limited to certain workpieces and processes and information about the contact mechanics are not available. The experimental investigation of contact mechanics under cutting fluid influence is hardly possible. For this reason, this paper uses a measurement strategy that uses scaled topographies and has already been successfully applied to contact mechanics problems. With such a setup, it is intended that at an early stage in the development of cutting fluids, their characteristics in terms of contact mechanics can be determined very efficiently. To demonstrate this approach, two different cutting fluids were tested with the help of the associated test rig—a water miscible emulsion and a non-water miscible grinding oil. The two fluids showed fundamentally different characteristics regarding their hydrodynamic load bearing effect, their influence on the friction behavior of the contact and their fluid flow in the gap. The properties analyzed here correspond to the practical application of cutting fluids. The results underline the potential of the presented setup for an integration into the development process of cutting fluids.

Funder

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3