Seismic performance of deep excavation restrained by guardian truss structures system using quasi-static approach

Author:

Maleki Mahdi,Nabizadeh Ali

Abstract

AbstractThe control of deformation and stability of the deep excavation walls under seismic and static loads is one of the most important issues in geotechnical engineering. Therefore, in the present study, using the finite element method and taking into account Hardening soil's behavioural model, the effect of different parameters affecting the performance of the deep excavation walls with the guardian truss structures using quasi-static analysis and its comparison with static analysis has been performed. According to the most important results, increasing in the geotechnical parameters of soil such as cohesion, friction angle and elastic modulus will reduce the maximum horizontal displacement in the vertical trench wall. Besides, the maximum settling in the adjacent ground and the maximum swelling in the bottom of the excavation will be reduced. In this way, the improvement in soil resistance parameters will increase the safety factor. Conversely, by increasing the horizontal distance between the trusses, the maximum horizontal displacement and the maximum settling in the adjacent ground and the maximum swelling in the bottom of the excavation will increase and the safety factor will be reduced. Also, the findings from this research show that by increasing the horizontal seismic acceleration coefficient (Kh) and as the construction stages progress, the maximum horizontal displacement of the wall, the maximum settling of the adjacent ground of the wall and the maximum swelling on the bottom of the trench increase and the safety factor will decrease. As well as, the results obtained from the quasi-static seismic analysis of the vertical trench restrained by the guardian truss structure such as the maximum horizontal displacement of the vertical trench wall and the maximum settling in the adjacent ground and the maximum swelling of the bottom of the excavation are much more than the static analysis.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3