Thermally induced Fe2O3 spikes decorated Ag/Fe2O3 nanocomposite fabrication for anti-bacterial and anti-cancer activities

Author:

Hossain Md. Kaium,Mishra Anshuman,Tiwari Aanshi,Pant Bishweshwar,Dey Shaikat Chandra,Tiwari Ayushi,Saha Otun,Rahaman Md. Mizanur,Shukla Yogesh R.,Tiwari Ashutosh,Ashaduzzaman Md.

Abstract

AbstractIn the context of anti-cellular catalytic permutations, the development of thermally-induced nanotechnology is of great importance. In this study, iron oxides (Fe2O3) decorated silver (Ag) core–shell nanocomposite was prepared using a green thermal decomposition process without using any additional chemicals. The nanocomposite was characterized for its composition, phase interactions, morphology, and stability using spectroscopic, thermogravimetric, and microscopic techniques. The resultant nanocomposite were also investigated against different types of bacteria and cancer cell lines. Both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Klebsiella spp., E. coli, and Pseudomonas) growth was inhibited by the Ag/Fe2O3 nanocomposite. The highest 19 mm zone of inhibition (ZOI) was found for Staphylococcus aureus by the combined effect of Ag and Fe2O3. The antibiofilm efficacy of the prepared nanocomposites showed biofilm destruction of 82.56% Staphylococcus aureus and 51.06% Klebsiella spp. Furthermore, the nanocomposite resulted in 80–90% death of Hela and BHK-21 cells but displayed lower cell toxicity in the case of the Vero cell line. This pathway of nanocomposites preparation with particle surface engineering would open new doors in the fields of nanobiotechnology and nanobiomedical applications.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3