Forest fire risk mapping using analytical hierarchy process (AHP) and earth observation datasets: a case study in the mountainous terrain of Northeast India

Author:

Lamat Ridalin,Kumar MukeshORCID,Kundu Arnab,Lal Deepak

Abstract

AbstractThis study presents a geospatial approach in conjunction with a multi-criteria decision-making (MCDM) tool for mapping forest fire risk zones in the district of Ri-Bhoi, Meghalaya, India which is very rich in biodiversity. Analytical hierarchy process (AHP)-based pair-wise comparison matrix was constructed to compare the selected parameters against each other based on their impact/influence (equal, moderate, strong, very strong, and extremely strong) on a forest fire. The final output delineated fire risk zones in the study area in four categories that include very high-risk, high-risk, moderate-risk, and low-risk zones. The delineated fire risk zones were found to be in close agreement with actual fire points obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) fire data for the study area. Results indicated that Ri-Bhoi’s 804.31 sq. km. (32.86%) the area was under ‘very high’ fire susceptibility. This was followed by 583.10 sq. km. (23.82%), 670.47 sq. km. (27.39%), and 390.12 sq. km. (15.93%) the area under high, moderate, and low fire risk categories, respectively. These results can be used effectively to plan fire control measures in advance and the methodology suggested in this study can be adopted in other areas too for delineating potential fire risk zones.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference64 articles.

1. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

2. Suryabhagavan KV, Alemu M, Balakrishnan M (2016) GIS-based multi-criteria decision analysis for forest fire susceptibility mapping: a case study in Harenna forest, southwestern Ethiopia. Trop Ecol 57(1):33–43

3. Nuthammachot N, Stratoulias D (2019) A GIS- and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest, Thailand. Geocarto Int 36(2):212–225

4. Sanchez-Azofeifa GA, Harriss RC, Skole DL (2001) Deforestation in Costa Rica: a quantitative analysis using remote sensing imagery1. Biotropica 33(3):378–384

5. United Nations Environmental Programme (UNEP) (2002) Global environment outlook 3:92-807-2087-2, pp 1–424

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3