Fuzzy based multi-response optimization: a case study on EDM machining process

Author:

Sahu JambeswarORCID,Shrivastava Sonam

Abstract

Abstract The current study challenges the multi-objective optimization of electric discharge machining (EDM) parameters. EDM is used for creating profiles by machining of workpiece that are difficult to machine by conventional method. In the current work four responses such as material removal rate (production rate), tool wear rate, surface roughness (quality) and circularity (profile) are collectively investigated with varying controlling parameters. The human decision for best combination of controlling parameters for highest performance has uncertainties, which results in inferior solution. The multiple responses along with uncertainties and impreciseness can be addressed by combining a neuro-fuzzy system with particle swarm optimization (PSO). To illustrate the superiority of the proposed approach a set of experiment have been conducted in EDM process using AISI D2 tool steel as workpiece and brass tool. The experimental plan was made according to the Box-Behnken response surface methodology design with four process parameters namely discharge current, pulse-on-time, duty factor, and flushing pressure. The four response parameters such as material removal rate, tool wear rate, surface roughness, and circularity of machined components were optimized simultaneously. One unique Multi-response Performance Characteristic Index was obtained by combining the four responses using the proposed neuro-fuzzy technique. A regression model was developed on single response and optimized by PSO to obtain the optimal parameter setting. An experiment was conducted on optimal parameter to test the optimum performance. It is observed that the EDM responses were affected significantly by discharge current and pulse-on-time. The increase in pulse-on-time leads to larger surface cracks and more micro-pores on the machined surface. Article Highlights RSM was proven to be an effective statistical tool for reducing the experimental runs, and also establishes the relation between multiple inputs and single output. The neuro-fuzzy system combined with PSO results a suitable model to convert multiple response into an equivalent single response. The presented approach can be a practical method for situations where multiple conflicting objectives are needed to be optimized at the same time.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3