Hot spots along the Fermi contour of high-Tc cuprates analyzed by s-d exchange interaction

Author:

Mishonov Todor M.ORCID,Zahariev Nedelcho I.ORCID,Chamati HassanORCID,Varonov Albert M.ORCID

Abstract

AbstractWe perform a thorough theoretical study of the electron properties of a generic CuO$$_2$$ 2 plane in the framework of Shubin–Kondo–Zener s-d exchange interaction that simultaneously describes the correlation between Tc and the Cu4s energy. To this end, we apply the Pokrovsky theory (J Exp Theor Phys 13:447–450, 1961) for anisotropic gap BCS superconductors. It takes into account the thermodynamic fluctuations of the electric field in the dielectric direction perpendicular to the conducting layers. We microscopically derive a multiplicatively separable kernel able to describe the scattering rate in the momentum space, as well as the superconducting gap anisotropy within the BCS theory. These findings may be traced back to the fact that both the Fermi liquid and the BCS reductions lead to one and the same reduced Hamiltonian involving a separable interaction, such that a strong electron scattering corresponds to a strong superconducting gap and vice versa. Moreover, the superconducting gap and the scattering rate vanish simultaneously along the diagonals of the Brillouin zone. We would like to stress that our theoretical study reproduces the phenomenological analysis of other authors aiming at describing Angle Resolved Photoemission Spectroscopy measurements. Within standard approximations one and the same s-d exchange Hamiltonian describes gap anisotropy of the superconducting phase and the anisotropy of scattering rate of charge carriers in the normal phase.

Funder

Bulgarian National Science Fund

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3