Selectivity index and separation efficiency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm

Author:

Paledi Usef,Allahkarami EbrahimORCID,Rezai Bahram,Aslani Mohammad Reza

Abstract

AbstractIt is essential to know the process efficiency in the industrial magnetic separation process under different operating conditions because it is required to control the process parameters to optimize the process efficiency. To our knowledge, there is no information about using artificial intelligence for modeling the magnetic separation process. Hence, finding a robust and more accurate estimation method for predicting the separation efficiency and selectivity index is still necessary. In this regard, a feed-forward neural network was developed to predict the separation efficiency and selectivity index. This model was trained to present a predictive model based on the percentage of iron, iron oxide and sulfur in mill feed and cobber feed, 80% passing size in mill feed and cobber feed and plant capacity. Therefore, this work aims to develop an intelligent technique based on an artificial neural network and a hybrid neural-genetic algorithm for modeling the concentration process. Results indicated that the values of mean square error and coefficient of determination for the testing phase were obtained 0.635 and 0.86 for selectivity index and of 4.646 and 0.84 for separation efficiency, respectively. In order to improve the performance of neural network, genetic algorithm was used to optimize the weights and biases of neural network. The results of modeling with GA-ANN technique indicated that the mean square error and coefficient of determination for the testing phase were achieved by 0.276 and 0.95 for selectivity index and of 1.782 and 0.92 for separation efficiency, respectively. The other statistical criteria for the GA-ANN model were better than those of the ANN model.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3