PSR-based research of feature extraction from one-second EEG signals: a neural network study

Author:

Dawid AleksanderORCID

Abstract

Abstract The speed and accuracy of signal classification are the most valuable parameters to create real-time systems for interaction between the brain and the computer system. In this work, we propose a schema of the extraction of features from one-second electroencephalographic (EEG) signals generated by facial muscle stress. We have tested here three sorts of EEG signals. The signals originate from different facial expressions. The phase-space reconstruction (PSR) method has been used to convert EEG signals from these three classes of facial muscle tension. For further processing, the data has been converted into a two-dimensional (2D) matrix and saved in the form of color images. The 2D convolutional neural network (CNN) served to determine the accuracy of the classifications of the previously unknown PSR generated images from the EEG signals. We have witnessed an improvement in the accuracy of the signal classification in the phase-space representation. We have found that the CNN network better classifies colored trajectories in the 2D phase-space graph. At the end of this work, we compared our results with the results obtained by a one-dimensional convolution neural network.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3