Modeling and optimization of cutting forces and effect of turning parameters on SiCp/Al 45% vs SiCp/Al 50% metal matrix composites: a comparative study

Author:

Laghari Rashid Ali,Li Jianguang

Abstract

Abstract In this study, the proposed experimental and second-order model for the cutting forces were developed through several parameters, including cutting speed, feed rate, depth of cut, and two varying content of SiCp. Cutting force model was developed and optimized through RSM and compared for two different percentages of components SiCp/Al 45% and SiCp/Al 50%. ANOVA is used for Quantitative evaluation, the main effects plot along with the evaluation using different graphs and plots including residual analysis, contour plots, and desirability functions for cutting forces optimization. It provides the finding for choosing proper parameters for the machining process. The plots show that during increment with depth of cut in proportion with feed rate are able to cause increments in cutting forces. Higher cutting speed shows a positive response in both the weight percentage of SiCp by reducing the cutting force because of higher cutting speed increases. A very fractional increasing trend of cutting force was observed with increasing SiCp weight percentages. Both of the methods such as experiment and model-predicted results of SiCp/Al MMC materials were thoroughly evaluated for analyzing cutting forces of SiCp/Al 45%, and SiCp/Al 50%, as well as calculated the error percentages also found in an acceptable range with minimal error percentages. Article Highlights This study focuses on the effect of cutting parameters as well as different percentage of SiC particles on the cutting forces, while comparing the results of both SiC particles such as SiCp/Al 45%, and SiCp/Al 50% the result shows that there isn’t fractional amount of impact on the cutting force with nominal increasing percentages of SiC particles. Cutting speed in machining process of SiCp/Al shows positive response in reducing the cutting forces, however, increasing amount of depth of cut followed by increasing feed rate creates fluctuations in cutting force and thus increases the cutting force in the cutting process. The developed RSM mathematical model which is based on the box Behnken design show excellent competence for predicting and suggesting the machining parameters for both SiCp/Al 45%, and SiCp/Al 50% and the RSM mathematical model is feasible for optimization of the machining process with good agreement to experimental values.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying laser irradiation-induced temperature field of particle reinforced metal matrix composites;International Journal of Thermal Sciences;2025-02

2. Genetic Modeling for Enhancing Machining Performance of High-Volume Fraction 45% SiCp/Al Particle Reinforcement Metal Matrix Composite;Arabian Journal for Science and Engineering;2024-07-27

3. Applications of artificial neural networks in machining processes: a comprehensive review;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-02-28

4. Investigation into the End-Milling Parameters of Mg/B4C Metal Matrix Composites;The International Conference on Processing and Performance of Materials (ICPPM 2023);2024-02-05

5. A Review on Machining SiCp/Al Composite Materials;Micromachines;2024-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3