Author:
Altun Emrah,Bhati Deepesh,Khan Naushad Mamode
Abstract
AbstractThis paper introduces a first-order integer-valued autoregressive process with a new innovation distribution, shortly INARPQX(1) process. A new innovation distribution is obtained by mixing Poisson distribution with quasi-xgamma distribution. The statistical properties and estimation procedure of a new distribution are studied in detail. The parameter estimation of INARPQX(1) process is discussed with two estimation methods: conditional maximum likelihood and Yule-Walker. The proposed INARPQX(1) process is applied to time series of the monthly counts of earthquakes. The empirical results show that INARPQX(1) process is an important process to model over-dispersed time series of counts and can be used to predict the number of earthquakes with a magnitude greater than four.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献