Dynamic generation of aqueous foams and fiber foams in a mixing tank

Author:

Prakash BaranivigneshORCID,Kouko JarmoORCID,Luukkainen Veli-Matti,Jäsberg Ari,Koponen Antti I.ORCID

Abstract

AbstractMixing tanks are employed in paper and pulp industries to generate aqueous foams and fiber foams. The aim of the present study was to investigate the effect of impeller geometry on dynamic foam generation in a 60 L mixing tank. Three impeller geometries including two radial—Rushton turbine (RT), Bakker turbine (BT6), one axial high solidity pitched blade turbine (HSPBT), and four dual impeller combinations were investigated. Compressed air, water and sodium dodecyl sulphate were used as gas phase, liquid phase and surfactant, respectively, to generate aqueous foam. 1% mass consistency softwood fiber was used to generate fiber foam. The change in aqueous foam density for any given impeller was limited to ± 40 kg/m3 indicating foam density was dictated by impeller type rather than power input. Single impellers generated bubbly liquids whereas dual impellers generated low-density aqueous foams. Besides, stable foam was produced even at low power input compared to single impellers due to increase in impeller swept volume and blade contact area. Addition of fibers increased the foam density by ~ 100–150 kg/m3 and reduced the half-life time by almost threefold for all impellers due to lower air content and higher bubble size. Placement of high shear impeller (BT6) at bottom and down-pumping axial impeller (HSPBT) on top generated fine bubbles.

Funder

European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3