Optimal sequential decision making with probabilistic digital twins

Author:

Agrell ChristianORCID,Rognlien Dahl Kristina,Hafver Andreas

Abstract

AbstractIn this study, we present a formal definition of the probabilistic digital twin (PDT). Digital twins are emerging in many industries, typically consisting of simulation models and data associated with a specific physical system. In order to define probabilistic digital twins, we discuss how epistemic uncertainty can be treated using measure theory, by modelling epistemic information via $$\sigma$$ σ -algebras. A gentle introduction to the necessary mathematical theory is provided throughout the paper, together with a number of examples to illustrate the core concepts. We then introduce the problem of optimal sequential decision making. That is, when the outcome of each decision may inform the next. We discuss how this problem may be solved theoretically, and the current limitations that prohibit most practical applications. As a numerically tractable alternative, we propose a generic approximate solution using deep reinforcement learning together with neural networks defined on sets. We illustrate the method on a practical problem, considering optimal information gathering for the estimation of a failure probability.

Funder

Det Norske Veritas

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference43 articles.

1. Hafver A, Eldevik S, Pedersen FB (2018) Probabilistic digital twins . [Online position paper by DNV GL Group Technology and Research; posted 28-August-2018; https://ai-and-safety.dnvgl.com/probabilistic-twin/]

2. Ghanem R, Soize C, Mehrez L, Aitharaju V (2020) Probabilistic learning and updating of a digital twin for composite material systems. Int J Numer Meth Eng. https://doi.org/10.1002/nme.6430

3. Kapteyn M, Pretorius J, Willcox K (2021) A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat Computat Sci 1:337–347

4. Ayello F, Liu G, Yang Y, Cui N (2021) Probabilistic digital twins for transmission pipelines. Proc. NACE 2021

5. Milton MA (2021) Real-time probabilistic solvers for digital twins of power electronic systems. PhD thesis, College of Engineering and Computing - University of South Carolina

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital twins as a security risk?;Risk Analysis;2024-07-27

2. Relativistic Digital Twin: Bringing the IoT to the future;Future Generation Computer Systems;2024-04

3. Digital Twin Models: Functions, Challenges, and Industry Applications;IEEE Journal of Radio Frequency Identification;2024

4. Managing the accuracy and speed of processes for automated monitoring of construction works in the context of new technologies;Nanotechnologies in Construction A Scientific Internet-Journal;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3