Corrosion behavior, mechanical properties, and in-vitro biocompatibility of cast Mg–3Zn–xSi biodegradable alloys for bone regeneration

Author:

Safwat Engie M.ORCID,Hammam Rania E.,Moussa M. E.,Abdel-Gawad Soha A.,Shoeib Madiha,El-Hadad Shimaa

Abstract

AbstractIn this research, Mg–3Zn–xSi (x = 0, 0.1, 0.3, and 0.6 wt%) biodegradable alloys were produced by simple stir casting method, their microstructure and phase changes were evaluated using X-ray diffraction (XRD), optical microscope (OM) and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM–EDS). Potentiodynamic polarization was conducted to measure the alloys’ corrosion behavior in simulated body fluid (SBF). Tensile strength test and in-vitro biocompatibility evaluation regarding MTT cytotoxicity, ALP osseointegration assay and MG-63 cell growth pattern were conducted. Electrochemical investigations showed that Mg–3Zn alloys enclosing Si attained degradation rates suitable for structural support until bone healing, while the Mg–3Zn alloy without Si had a corrosion rate of 0.128 mm/year which is much lower than the required value. None of the inspected alloys exhibited a significant cytotoxic effect, meanwhile, Mg–Zn base alloy and the alloy with 0.3 wt% Si demonstrated the highest ALP level. The optimum cell growth pattern was demonstrated for Mg–Zn base alloy and the alloy with 0.1 wt% Si. Evidence of calcium phosphate precipitation was observed in the four investigated Mg–3Zn alloys. Therefore, based on the fore mentioned results, Mg–3Zn–xSi alloys were suggested as viable biodegradable materials due to their compatible degradation rates, proved cytocompatibility, high cell viability and excellent osseointegration potential.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3