Optimization and biosynthesis of calcined chicken eggshell doped titanium dioxide photocatalyst based nanoparticles for wastewater treatment

Author:

Bullo Tafere Aga,Bayisa Yigezu MekonnenORCID,Bultum Mohammed Seid

Abstract

Abstract This study presents, biosynthesis of calcinated eggshell (CES) doped with Titanium dioxide (TiO2,) photocatalyst for photodegradation of methylene blue from synthetic wastewater. The influence of three independent variables for improving photodegradation efficiency was investigated and optimized using response surface methodology of Box–Behnken Design on the removal of methylene blue using the calcined chicken eggshells (CES) doped with titanium dioxide. The experimental result showed that 95.8% degradation efficiency of methylene blue by prepared photocatalyst at a contact time of 180 min, initial concentration of methylene blue of 10 ppm, and calcined eggshells (CES) doped with titanium dioxide dose of 2.5 g/L. The synthesized photocatalyst was characterized by Fourier-transform infrared spectroscopy, UV-spectrometer, and X-ray diffractometer and UV–vis Spectroscopy for determined their functional group, structure, and bandgap energy respectively. Their results depict the calcined eggshell doped with titanium dioxide photocatalyst is a promising option for the degradation of methylene blue from industrial wastewater under the stated condition. Highlights Analysis of chicken eggshell wastes are being used as photocatalyst source to calcinated eggshell doped TiO2, i.e., ‘Waste to photocatalyst’ for production of viable sustainable products to bio photocatalyst from wastewater to fulfill the need of an expensive metal-doped catalyst. Photocatalytic degradation of Methylene Blue experiment has been done. The highest degradation efficiency of 95.8% methylene blue was obtained at a contact time of 180 min, 10 ppm of initial concentration of methylene blue, and a dopant dose of 2.5 g/L by using prepared photocatalyst.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3