Abstract
AbstractA method for establishing machine tool’s spatial error model is put forward based on screw theory, which is different from the traditional error modeling method. By analyzing the position relationship between the ideal coordinate vector and the actual coordinate vector jointly affected by linear errors and angular errors, a single-axis screw conversion matrix error expression is brought up based on screw theory. Meanwhile, the comprehensive spatial error model of the CNC machine tool is derived by considering the influence of the workpiece motion chain and the tool motion chain on the model. Further, to compensating spatial errors of CNCs, such screw theory-based model is embedded in the error compensation system by means of integration of a few specific application examples. And in order to evaluate the compensation effects, an integrated evaluation method of quantitative spatial diagonal calculation and MATLAB simulation is proposed. Application results show that the screw theory-based spatial error model of tool has a very substantial compensation effect, which makes the position error of the machine tool decreased by about 80%.
Funder
2019 central government guides local special funds
2018 national scieence and technology major project
automotive discipline group open fund
high-end cnc machine tools and basic manufacturing equipment technology major project
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献