Abstract
AbstractThe offshore wind power industry is an emerging and exponentially growing sector, which calls to a necessity for a cyclical monitoring and inspection to ensure the safety and efficiency of the wind farm facilities. Thus, the emersed (aerial) and immersed (underwater) scenarios must be reconstructed to create a more complete and reliable map that maximizes the observability of all the offshore structures from the wind turbines to the cable arrays, presenting a multi domain scenario.This work proposes the use of an Autonomous Surface Vehicle (ASV) to map both domains simultaneously. As such, it will produce a multi-domain map through the fusion of navigational sensors, GPS and IMU, to localize the vehicle and aid the registration process for the perception sensors, 3D Lidar and Multibeam echosounder sonar. The performed experiments demonstrate the ability of the multi-domain mapping architecture to provide an accurate reconstruction of both scenarios into a single representation using the odometry system as the initial seed to further improve the map with data filtering and registration processes. An error of 0.049 m for the odometry estimation is observed with the GPS/IMU fusion for simulated data and 0.07 m for real field tests. The multi-domain map methodology requires an average of 300 ms per iteration to reconstruct the environment, with an error of at most 0.042 m in simulation.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献