Experimental analysis on waterjet-guided Nd: YAG laser thin wood machining

Author:

Doumbia Bakary S.ORCID,Yang Chunmei,Ma Yan,Liu Qingwei,Qu Wen,Liu Jiuqing

Abstract

Abstract Waterjet-Guided Laser (WJGL) machining is an advanced technique providing efficiency and precision for wood machining. The present study investigates the practical demonstration and analysis of laminated object manufacturing (LOM) WJGL for thin wood machining. A theoretical process of wood laser cutting was established, expressing relations between the cut kerf width and the influencing parameters. WJG Nd: YAG laser system was utilized for machining Korean pine and Northeast China ash specimen of 3 mm thickness, each with 7.21 and 7.13% of water content, respectively, under different machining conditions. The effects of process parameters and influences on woodcut surface geometry were analyzed via analysis of variance (ANOVA) and scanning electron microscopy (SEM). The investigated parameters include the laser cutting speed, power, kerf width, heat-affected zone (HAZ), and cut surface roughness. The study shows that the kerf width and surface were significantly influenced by WJGL power, followed by the cutting speed. For both wood specimens, at a fixed laser cutting speed of 2.36 mm/s, the kerf width increases significantly with laser power, affecting the cut surface quality accordingly. At 6 W and 8 W, the cut kerf geometry and surface quality were excellent for the Pinus Koraiensis, with kerf widths of 0.79 and 0.852 mm, respectively. At a fixed laser power of 8 W, the kerf width decreases with the cutting speed, affecting the cut surface quality. At a cutting speed of 4.33 mm/s, an excellent cut surface of Fraxinus mandshurica was observed with 0.808 mm of kerf width. Depending on the machining conditions, the kerf width variations of Korean pine were more significant than the Northeast China ash. LOM-WJGL is an efficient and eco-friendly technique for thin wood processing. Graphical abstract Article Highlights Practical modeling demonstration of waterjet guided laser (WJGL) wood machining. Experimental investigation of different wood specimens under influenced process parameters and machining conditions. Characterization and identification of suitable wood types for efficient and eco-friendly applications.

Funder

Major Special Research and Development Projects in Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3