Abstract
AbstractThe current study was carried out to examine the spatial and temporal variations of physicochemical water quality parameters of Lake Bunyonyi. The observations were made on the surface water of Lake Bunyonyi for 1 year to determine the water quality. The basic 12 variables used to determine the quality of water were measured monthly at nine stations. Water temperature, dissolved oxygen (DO), turbidity, electric conductivity (EC), pH and Secchi depth (SD) were measured in the field, while parameters like total nitrogen (TN), total phosphorus (TP), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), soluble reactive phosphorus (SRP) were determined following APHA 2017 standard guidelines for physicochemical analysis. Taking into account standard guidelines for drinking water by the Uganda National Bureau of Standards (UNBS) and the World Health Organization (WHO), the water quality index (WQI) was used to determine the water quality. Temperature, DO, pH, turbidity and EC did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the study months (p < 0.05). Likewise, TN, TP, NO2-N, NO3-N and SRP did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the study months (p < 0.05). The WQI values ranged from 28.36 to 49 across and from 28.2 to 56.2 between study months with an overall mean value of 36.9. The measured water quality variables did not exceed the UNBS and WHO standards for drinking water in all months and at all stations. According to these values, the water quality of Lake Bunyonyi generally belongs to the ‘good’ class in terms of drinking water quality based on the WQI classification. The study findings are fundamentally important for policy makers in setting guidelines for effective lake management.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献