The efficacy of ZnO-NPs prepared via green route against colon and breast cancer cells

Author:

Kahil HebaORCID,Gad Mohamed S.,Ebraheem Hadir

Abstract

AbstractThis study is an attempt to utilize green tea [GT] extract and pomegranate peel [PP] for the synthesis of zinc oxide nanoparticles. The selected plants are rich in phenols therefore are awaited to successfully synthesize ZnO nanoparticles without the need for an alkylating agent. In addition, these extracts contain various functional groups that confer colloidal stability for nanoparticles and ameliorate their biocompatibility via a one pot synthesis route. X-ray diffraction analysis (XRD), and transmission electron microscopy (TEM) techniques are used to investigate both structural and morphological properties of the obtained nanoparticles [Zn-GT and Zn-PP]. To confirm the presence of functional groups adsorbed on the surface of biogenic-NPs, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were employed. The outcomes demonstrated that only the use of green tea extract was successful in synthesizing zinc oxide from the zinc acetate dihydrate precursor, producing particles with an average size of approximately 25 nm. Anticancer activity and cytotoxicity of the biosynthesized Zn-GT nanoparticles were assessed against human breast cancer [MCF7] and colorectal carcinoma [HCT116] cell lines. The cytotoxicity of ZnO nanoparticles is presented with reference to normal skin [BJ1] cell line subjected to similar concentrations of the NPs. The obtained results verified a discriminative inhibition of both MCF7 and HCT116 cancer cell growth upon using Zn-GT, which completely succeeded in preventing cancer cell growth.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3