Effects of freeze-drying and use of artificial seawater on phosphorus exchange isotherms in brackish water sediments

Author:

Vaalama AnuORCID,Hartikainen Helinä,Soinne Helena,Lukkari Kaarina

Abstract

Abstract This study reports results on the estimated magnitude of changes in P sorption isotherms in clayey mud sediments when performed using (1) freeze-dried instead of fresh sediment samples and (2) artificial sea water (ASW) instead of ambient near-bottom water. The sediments used differed in their P sorption. For the isotherms, sediments were equilibrated for 48 h in solutions of varying P concentration whereafter the amount of P sorbed or desorbed was determined. We adjusted the modified Freundlich equation to the isotherm data and assessed differences in the isotherms between the treatments by comparing equilibrium P concentrations and P buffering capacities determined from the isotherm equation. Freeze-drying decreased the P sorption in all investigated sediments, but the magnitude of the changes varied depending on the properties of the sediments. The effect was minor in the sediment abundant in P sorption sites and low in easily exchangeable P, while it was clearer in the sediments originally high in P or low in sorption surfaces. ASW and ambient water produced similar isotherms suggesting that ASW is a suitable equilibrium solution in P exchange experiments with muddy clay sediments. This study enlightens the processes occurring in freeze-drying. The results highlight that when examining the effects of dissimilar treatments or experimental conditions on the P exchange isotherms the magnitude and significance of the observed changes should be evaluated in a proper context considering the precision of the method. Article highlights The effects of freeze-drying on P sorption isotherms are minor in sediments abundant in unoccupied sorption surfaces. Artificial sea water is a suitable background matrix for the P exchange isotherms. The precision of the method should be considered when comparing the effects of differing isotherm treatments.

Funder

Maj ja Tor Nesslingin Säätiö

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3