Abstract
AbstractNigeria's most consumed potable water plastic wastes are indiscriminately dumped into agricultural soil despite their ability to become microplastics. The study evaluates the potential impacts of these microplastics on soil physico-chemical parameters, soil bacterial diversity and functions as well as antibiotic resistance. Soil sample was collected using a sterile hand-held auger and its physico-chemical parameters evaluated. Baseline microplastic concentration was determined via the flotation method while microbial isolates were obtained from the test (enriched with microplastics) and control samples using cultural technique and metagenomics. Metagenomic next-generation sequencing (mNGS) was done using the Illumina Miseq platform. The cluster of orthologous genes (COG) tool was used in the prediction of bacterial functional roles. Replicate readings were analysed using analysis of variance (ANOVA) and means compared using the student’s t test. Observed baseline microplastic concentration was 0.08 particles/g of soil. The addition of the microplastics to the soil sample decreased the concentrations of some metals (iron, zinc, lead and nickel) while cobalt concentration, pH level and microbial counts increased. Microbial count and pH clustered together while iron, magnesium, nitrate, nitrite, chromium, cobalt, total organic carbon, zinc, lead, and nickel showed positive loading values suggesting that the addition of microplastics could alter them. Dominant taxa were proteobacteria, unknown, firmicutes at the phyla level. At the level of species, Pseudomonas species dominated microplastics incubated soil while potential pathogenic species such as Klebsiella dominated the control sample. A higher level of multi-drug resistance and altered metabolisms was observed in the test sample. Sachet water microplastics could have serious implications for public health and food security.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献