Abstract
AbstractThe power system stability and reliability are stimulated by the faults on the transmission line. Many researchers have explored the performance of the transmission system under various kinds of faults. Specifically, the arrival of expeditious and effective data acquisition systems with high rate of sampling has set down the foundation for successful real-time monitoring. Using the LabVIEW and the data acquisition system’s of National Instruments (NI), virtual systems have been developed for obtaining optimal paradigmatic data with appropriate characterization and quality transmission. The primary objective of the work is to perceive and comprehend the transmission line faults with the aid of synchronized phasor measurements obtained from the phasor measurement unit (PMU) as well as protecting the system using auto-reclosing signal. The developed algorithms include phaselet coefficients for perception as well as comprehension. In order to increase the accuracy, particle swarm optimized extreme learning machine technique has also been used for comprehension. A protection scheme is employed using auto-reclosing to minimize the power loss and quick reconnection the power line in case of temporary fault. Developed algorithms have been validated on a practical laboratory transmission line using NI PMU. As the LabVIEW platform has been used for simulations, it is composed of visual displays such that the system operator can efficiently perform the planning and control decisions.
Funder
Science and Engineering Research Board, India
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献