Next generation of polyolefin plastics: improving sustainability with existing and novel feedstock base

Author:

Reznichenko Alexander,Harlin AliORCID

Abstract

Abstract In this account, we present an overview of existing and emerging olefin production technologies, comparing them from the standpoint of carbon intensity, efficiency, feedstock type and availability. Olefins are indispensable feedstock for manufacture of polyolefin plastics and other base chemicals. Current methods of olefin production are associated with significant CO2 emissions and almost entirely rely of fossil feedstock. In order to assess potential alternatives, technical and economic maturity of six principal olefin production routes are compared in this paper. Coal (brown), oil and gas (grey), biomass (green), recycled plastic (pink) as well as carbon capture and storage (purple) and carbon capture and utilization (blue) technologies are considered. We conclude that broader adoption of biomass based “green” feedstock and introduction of recycled plastic based olefins may lead to reduced carbon footprint, however adoption of best available technologies and introduction of electrocracking to existing fossil-based “grey” olefin manufacture process can be the way to achieve highest impact most rapidly. Adoption of Power-to-X approaches to olefins starting from biogenic or atmospheric CO2 and renewable H2 can lead to ultimately carbon–neutral “blue” olefins in the long term, however substantial development and additional regulatory incentives are necessary to make the solution economically viable. Article highlights In this account, we introduce a color coding scheme to differentiate and compare carbon intensity and feedstock types for some of the main commercial and emerging olefin production routes. Most viable short term improvements in CO2 emissions of olefin production will be achieved by discouraging “brown” coal based production and improving efficiency of “grey” oil and gas based processes. Gradual incorporation of green and recycled feedstock to existing olefin production assets will allow to achieve substantial improvements in carbon efficiency in longer term.

Funder

teknologian tutkimuskeskus vtt

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3