Design suggestions on modified self-sustainable space toilet

Author:

Sakhare Shreyash A.,Pendkar Sourabh M.,Kanu Nand JeeORCID,Gupta Eva,Vates Umesh Kumar,Singh Gyanendra Kumar,Verma Girish C.

Abstract

Abstract The present research investigates the design of compact and lightweight waste collection system (WCS) for interplanetary missions such as Mars, and the Moon as well as the space with the required features of NASA’s lunar loo challenge (released date: 25th June, 2020). Existing space toilets’ WCS store waste in small plastic bags and these bags are thrown in the space which increases the space junk. If these WCS are used on planets, they could pollute the planets. The newly designed—unisex and self-sustainable space toilet meets its objective of intimacy and warmth for the astronauts as it is equipped with all essential features such as (a) the basin for vomit collection, (b) the rotating waste storage based on the mechanism of artificial gravity, and (c) the noiseless bellow pump for air flow flushing system (AFFS). The WCS is designed for the storage of urine, faeces, vomit, diarrhoea, and menses. In the first half of the research article, the focus is kept on improving self-sustainability of the present WCS. In the second half of the present investigation analyses are done for multiphase flows of the CFD analysis in ANSYS fluent to simulate the flow of air through the nozzle provided with (a) the seat, (b) the urine funnel, and (c) the basin for air flow flushing system (AFFS). The design of the present self-sustainable space toilet proposed herewith is justified suitable for different gravitational conditions such as (a) Mars (3.721 m/s2), (b) the Moon (1.62 m/s2), and (c) the zero—or microgravity i.e., the space gravity. The proposed solar-operated WCS could be integrated to function with (a) water recovery and management (WRM) system, (b) the inbuilt composting unit, and (c) the bioregenerative life support system (BLSS). Furthermore, the assessment of the required electrical energy derived from the solar energy (harnessed using efficient solar photovoltaic (PV) modules) is conceptualized for the effective functioning of the present self-sustainable WCS. Article highlights The present investigation explores into the design of lightweight and compact WCS for interplanetary missions such as Mars and the Moon, as well as space missions with the functionality listed by NASA's lunar toilet competition (released date: 25th June, 2020). The actual space toilets, which are used on the International Space Station (ISS), are not designed to withstand varying gravity circumstances. The new advanced—unisex and self-sustaining space toilet achieves its goal of intimacy and warmth for astronauts by including all necessary features such as (a) a vomit collection basin, (b) rotating waste storage based on artificial gravity mechanism, and (c) a noiseless bellow pump for air flow flushing system (AFFS).

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference31 articles.

1. Taylor Z (2020) A study of space bathroom design. Acta Astronaut 174:55–60. https://doi.org/10.1016/j.actaastro.2020.04.027

2. Li Y-Y, Wang J-X, Chen X (2020) Can a toilet promote virus transmission? From a fluid dynamics perspective. Phys Fluids 32(6):065107. https://doi.org/10.1063/5.0013318

3. NASA (2021) Logistic reduction: universal waste management system (LR-UWMS). Advanced Exploration Systems Division. https://techport.nasa.gov/view/93128. Accepted 4 Feb 2021

4. Stapleton TJ, Baccus S, Broyan Jr. JL (2013) Development of a universal waste management system. American Institute of Aeronautics and Astronautics, pp 1–5. https://doi.org/10.2514/6.2013-3400

5. Space (2021) How do you puke without gravity? (Video). Space. https://www.space.com/20850-space-puke-astronaut-video.html. Accepted 05 Feb 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3