Capillary electrophoresis-UV analysis using silica-layer coated capillary for separation of seven phenolic acids and caffeine and its application to tea analysis

Author:

Hemwech Pattamaporn,Obma Apinya,Detsangiamsak Sasinun,Wirasate Supa,Chaiyen Pimchai,Wilairat Prapin,Chantiwas RattikanORCID

Abstract

Abstract This work presents an innovative silica-layer coated capillary with comparison study of the silica-layer coated capillary and the fused-silica capillary for the separation of seven phenolic acids viz. p-hydroxyphenylacetic acid (PHPA), p-coumaric acid (PCA), p-hydroxybenzoic acid (PHBA), caffeic acid (CFA), (3,4-dihydroxyphenyl)acetic acid (DHPA), gallic acid (GLA), and 2,3,4-trihydroxybenzoic acid (THBA), together with caffeine (CF), by capillary electro-chromatography (CEC) and micellar electrokinetic chromatography (MEKC), respectively. The running buffer was 25.0 mM borate at pH 9.0, with addition of 50.0 mM sodium dodecyl sulfate for the MEKC mode. The non-coated capillary could not separate all seven phenolic acids by CEC or MEKC. This was achieved using the coated capillary for both CEC and MEKC. The innovative coated capillary with CEC had plate number N ≥ 2.0 × 104 m−1 and resolution Rs ≥ 1.6 for all adjacent pairs of peaks. The capillary was also able to separate GLA and THBA which are structural isomers. Although MEKC mode provided comparable efficiency and selectivity, the reduced EOF of the coated capillary led to longer separation time. The linear calibration range of the seven phenolic acids and caffeine were different but the coefficients of determinations (r2) were all > 0.9965. The precisions of the relative migration times and peak area ratios of analyte to internal standard were 0.1–1.8% and 1.8–6.8%, respectively. There were no statistical differences in the efficiency of separation of the phenolic acids and caffeine for three coated capillaries. It was applied to the analysis of caffeine and phenolic acids in brewed tea using tyramine as the internal standard. The tea samples were diluted prior to analysis by CEC. The separation was less than 15 min. Caffeine, gallic acid and p-coumaric acid were detected and quantified. Caffeine and gallic acid contents were 10.8–15.0 and 2.6–4.8 mg g−1 dry tea leaves, respectively. p-Coumaric acid was detected in only one of the samples with a content of 0.4 mg g−1. Percent recoveries of spiked diluted samples were 90 ± 9 to 106 ± 13%, respectively. Article highlights Silica-layer coated capillary is first reported for simultaneous separation of seven phenolic acids by non-MEKC analysis. Performance between coated, and non-coated capillaries with analysis by CEC and MEKC were compared. Plate number, resolution, capillary reproducibility, and electroosmotic flow mobility are investigated. Graphical abstract

Funder

National Research Council of Thailand

Faculty of Science, Mahidol University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3