Abstract
AbstractWelding-related loss of strength, especially in the case of fatigue, significantly reduces the range of applications for high-strength fine-grained structural steels. In order to counteract this situation, the aim of the work is to increase the strength of welded joints made of high-strength fine-grained structural steels by using coated welding consumables. This is described using the example of a titanium coating for quasi-static and abrupt dynamic load and fatigue. The thermomechanical rolled fine-grained structural steel S700MC is used as the base material, using a welding filler of the same type. MAG welding was used to produce the fillet welds on a T-joint. In addition to tensile tests at four different load speeds up to 2 m/s, the results of fatigue tests are presented. In addition, the microstructure of the weld seams is examined by metallographic methods and the scanning electron microscope. A comparison with two joints from an unmodified variant and another steel grade with comparable properties (S690QL) serves to classify the results. It is shown that the use of modified filler metals has a significant influence on the overall strength of the welded joint due to the rounding of the weld toe. Thus, the fatigue strength can be increased by around 50%. In addition, the strength under sudden dynamic load can be increased by 10%.
Funder
Technische Universität Clausthal
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献