A preliminary study on wellbore flow interpretation of fiber optic vibration signals based on K-means clustering algorithm

Author:

Wu Xianzu,Gan Lixiong,Yuan Shixiong,Rui DengORCID

Abstract

AbstractThe wellbore flow analysis of optical fiber vibration signal depends on distributed optical fiber logging. Distributed optical fiber logging technology identifies the fluid in the well through distributed optical fiber acoustic sensor (DAS) and distributed optical fiber temperature sensor (DTS). Distributed optical fiber sensor has the advantages of small underground interference, high efficiency and low cost. In this paper, the wellhead data extracted by the distributed optical fiber acoustic sensor is used to calculate the upper bound of the fluid sound frequency band in the pipe by nonlinear least squares fitting. The K-means clustering algorithm is used to cluster the optical fiber vibration signals in the low frequency band. According to the clustering results, the ratio of the optical fiber signal eigenvalues of each production layers is obtained, and the trend of the ratio of the optical fiber signal eigenvalues of each production layers is judged to be close to the trend of the water absorption intensity. Compared with traditional acoustic logging, the wellbore flow analysis using distributed optical fiber acoustic sensor can quickly determine the production contribution of each layer and the change of fluid phase state in the production cycle. Combined with traditional production logging technology, distributed optical fiber logging shows its reliability and accuracy in data collection, logging interpretation and production application. Starting from the principle of distributed optical fiber acoustic sensing technology, this paper briefly expounds the properties of distributed optical fiber acoustic sensor and the principle of injection profile logging, systematically introduces the processing of distributed optical fiber acoustic data, and emphatically introduces the accuracy of K-means clustering algorithm for analyzing distributed optical fiber acoustic signal and qualitative judgment of production layer, which provides a new idea for judging the accuracy of production layers.

Funder

Key Project of Science and Technology Research Program of Hubei Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference26 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3