Characterizing Khetri copper mine environment using geospatial tools

Author:

Punia AnitaORCID,Joshi Pawan Kumar,Siddaiah Neelam Siva

Abstract

AbstractMines result in land use and land cover (LULC) change due to degradation of natural resources and establishment of new infrastructure for ore extraction and beneficiation. The present study was carried out to, with objectives, (1) characterize LULC change (from 1975 to 2017) in Khetri copper mine region, (2) spatial distribution of pollution indices and (3) spectral response of elemental concentration of soil and groundwater using Landstat and ASTER satellite data. The study was designed to fulfil the objectives and for the same NDVI values were calculated for LULC classification and generated maps were analyzed for landscape pattern. Spatial distribution of pollution indices calculated using geochemical data of soil and groundwater was plotted to understand the impact of contamination on landscape pattern. The correlation of spectral response of Landstat bands with heavy metals concentration was plotted to assess their possible use in quantification of heavy metals. Results show constant increase in settlements, mines and open area while vegetation cover has decreased. Landscape and class level metrics (number of patch, patch density, aggregation index and landscape shape index) indicate increase in the fragmentation of landscape in recent years. Shannon’s Evenness Index indicates increase in uniformity in landscape and it is attributed to loss of vegetation and agriculture patches. Pollution indices, Pollution Load Index for soil is high near the overburden materials and Index of Environmental Risk (IER) and Contamination Index for ground water is high near abandoned mines. Spectral bands 5 and 6 (SWIR 1) show significant negative correlation, and 9 (Cirrus) shows significant positive correlation with metal concentration in soil and water suggesting the possible use of remote sensing in assessment of metal concentration at ground level. Thus, it can be concluded that mines significantly influence the landscape pattern and remote sensing could be used for the assessment and predication of heavy metal contamination at broader scale in a cost-effective way.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3