Using seawater-based Na2CO3 medium for scrubbing the CO2 released from Bio-CNG plant for enhanced biomass production of Pseudanabaena limnetica

Author:

Rambhiya Sagar Jayant,Magar Chaitanya Sampat,Deodhar Manjushri ArunORCID

Abstract

AbstractThe concentration of CO2, one of the most important greenhouse gases (GHG), has reached to 409.8 ± 0.1 ppm in 2019. Although there are many carbon capture and storage (CCS) methods, they are very costly and their long term use raises concern about environmental safety. Alternatively, bio-sequestration of CO2 using microalgal cell factories has emerged as a promising way of recycling CO2 into biomass via photosynthesis. In the present study, Indigenous algal strain Pseudanabaena limnetica was cultivated in pneumatically agitated 60-L flat-panel photobioreactor system. The gas was released from Bio-CNG plant as by-product into Na2CO3-rich medium and cultivated in semicontinuous mode of operation. It was observed that when CO2 was sparged in seawater-based 0.02 M Na2CO3 solution, maximum CO2 was dissolved in the system and was used for algal cultivation. Control system produced 0.64 ± 0.035 g/L of biomass at the end of 15 days, whereas CO2 sparged Na2CO3 medium produced 0.81 ± 0.046 g/L of biomass. When CO2 from Bio-CNG station was fed, it resulted in biomass production of 1.62 ± 0.070 g/L at the end of 18 days compared to 1.46 ± 0.066 g/L of biomass produced in control system which was not fed with gas released from Bio-CNG plant as by-product. Thus, feeding CO2 directly into Na2CO3 medium and operating the system semicontinuously would be efficient for scrubbing CO2 from commercial Bio-CNG plant. This study proves that feeding CO2 gas from Bio-CNG plant into Na2CO3-rich alkaline system can be used to feed algae for enhanced biomass production.

Funder

Department of Biotechnology , Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3