Life cycle assessment of the manufacturing and operation of distillation column for eliminating volatile and organic halogen compounds from process wastewater

Author:

Do Thi Huyen Trang,Toth Andras JozsefORCID

Abstract

AbstractDistillation serves as the foremost method for commercial-scale separation of fluid mixtures. Widely applied in wastewater treatment, it is the preferred choice for isolating volatile multi-component mixtures into pure substances. Distillation technology offers notable economic benefits due to its easy implementation, high efficiency, productivity, and robust safety features. This study examines the environmental impacts associated with the production and usage of a distillation, specifically in treating pharmaceutical process wastewater containing organic halogen compounds (AOX). The analysis adopts a 'gate-to-gate' approach, with the specified functional unit (FU) set at 1 kg of treated effluent containing no more than 8 ppm of AOX and less than 1000 mg O2/L of Chemical Oxygen Demand (COD). In this work, Life Cycle Assessment (LCA) is conducted using Product Environmental Footprint (PEF) and Recipe 2016 Endpoint (H) V1.06 methodologies, utilizing the SimaPro V9.3.0.3 software in conjunction with the Ecoinvent V3.8 database. Analysis results have shown the emission of 1.11 × 10–2 kg CO2-eq, in which operational and production processes contribute 91.9% and 8.1%, respectively. To mitigate adverse effects, alternative energy sources, i.e., solar, offshore wind, and onshore wind are integrated into the distillation procedure. The substitution of hard coal with solar, offshore wind, and onshore wind energy displays the potential to significantly reduce climate change impact by 64.3%, 62.9%, and 62.8%, respectively.Article Highlights Distillation process undergoes a thorough life cycle assessment from production to application. Distillation process requires high energy and emits 1.11 × 10–2 kg CO2-eq per functional unit. The operational phase dominates over 90% in three damage categories: human health, ecosystems, and resources.

Funder

Hungarian Scientific Research Fund

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3