Unsteady pressure measurement and numerical simulations in an end-wall region of a linear blade cascade

Author:

Flídr ErikORCID,Straka Petr,Kladrubský Milan,Jelínek Tomáš

Abstract

AbstractThis contribution describes experimental and numerical research of an unsteady behaviour of a flow in an end-wall region of a linear nozzle cascade. Effects of compressibility ($$M_\mathrm {2,is}$$ M 2 , is ) and inlet flow angle ($$\alpha _1$$ α 1 ) were investigated. Reynolds number ($$Re_\mathrm {2,is}$$ R e 2 , is $$=8.5\times 10^5$$ = 8.5 × 10 5 ) was held constant for all tested cases. Unsteady pressure measurement was performed at the blade mid-span in the identical position $${\mathfrak {s}}$$ s to obtain reference data. Surface flow visualizations were performed as well as the steady pressure measurement to support conclusions obtained from the unsteady measurements. Comparison of the surface Mach number distributions obtained from the experiments and from the numerical simulations are presented. Flow visualizations are then compared with calculated limiting streamlines on the blade suction surface. It was shown, that the flow structures in the end-wall region were not affected by the primary flow at the blade mid-span, even when the shock wave formed. This conclusion was made from the experimental, numerical, steady as well as unsteady points of view. Three significant frequencies in the power spectra suggested that there was a periodical interaction between the vortex structures in the end-wall region. Based on the data analyses, anisotropic turbulence was observed in the cascade.

Funder

Technology Agency of the Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3