Luminescent and thermal properties of novel orange–red emitting MgNb2O6:Sm3+ phosphors for displays, photo catalytic and sensor applications

Author:

Basavaraju N.,Prashantha S. C.ORCID,Nagabhushana H.,Naveen Kumar A.,Chandrasekhar M.,Shashi Shekhar T. R.,Ravikumar C. R.,Anil Kumar M. R.,Surendra B. S.,Nagaswarupa H. P.

Abstract

AbstractNovel Sm3+ doped columbite-type orthorhombic structured MgNb2O6 (MNO) orange-red emitting phosphors were prepared by solution combustion method using ODH as a fuel. The powder phase purity, particle morphology, size, elemental composition, luminescence properties, photocatalytic behaviors and electrochemical studies of prepared samples were studied in detail. Photoluminescence emission spectra of MNO:Sm3+ nanophosphors show all the characteristic emissions of Sm3+ cations corresponds to the transitions 4G5/2 → 6Hj/2(j=5,7,9,11) when excited at 463 nm energy. Among these the strongest emission peak was at 608 nm which corresponds to 4G5/2 → 6H7/2 transition of Sm3+ cations in the host lattice. The luminescence quenching was confirmed by the dipole–dipole interaction among Sm3+ ions. As a result of J-O analysis the branching ratio (~ 58% > 50%) show that the phosphor was highly suitable for color display devices. Photocatalytic activity of MNO:Sm3+ (5 mol%) under UV light shows 99% degradation of AR-88 dye. Electrochemical Impedance Spectroscopy (EIS) confirms the reversibility of the redox reaction, which helps in sensing the presence of paracetamol and alcohol. Thus, MNO:Sm3+ phosphors have great potential applications in display, catalytic, photonic, chemical and thermal sensor applications.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3