Quantitative measurements of inorganic analytes on a digital microfluidics platform

Author:

Huang Shuquan,Fair Richard B.ORCID

Abstract

AbstractTwo methods were studied for selectively measuring the on-chip absorbance of trace sulfate analytes in droplets on a digital microfluidics (DMF) platform. In one method, the direction of measurement was perpendicular to the flat upper and lower surfaces of the DMF platform (vertical), and in the second method, the measurement direction was parallel to the DMF platform surfaces (horizontal). The channel height or the vertical light path length was 0.24 mm, and the droplet diameter was 1 mm. The DMF system employed a silicone oil transport medium whereby a thin, non-uniform oil layer formed between the droplet and the upper/lower plates which was unstable, resulting in randomly formed local oil lenses. The mobile oil lenses caused vertical absorbance measurement errors and uncertainties. The effects of the oil lenses were verified by simulation. Horizontal absorbance measurements were taken with embedded optical fibers (0.2 mm in diameter) aligned over the bottom chip surface in contact with the sides of the droplet, resulting in a horizontal light path length approximately three times that of the vertical light path. Because no oil lenses could form on the droplet’s sides, the stability of repeated horizontal measurements outperformed repeated vertical measurements made on the same droplet and on multiple droplets actuated into the measurement positions. Comparisons were based on measurement standard deviations and limits of detection (LOD). The following LODs and measurement standard deviations were achieved for horizontal measurements of multiple sulfate concentrations in 1.5 µl droplets: 7 ppm for sulfate (0.3–2.7%) and an R2 value of 0.957 from a least square data fit. Measurements on a commercial plate reader gave comparable results (200 µl liquid in each well, LOD equals 11 ppm, CV equals to 0.2–4%), even though the absorbance path was larger (0.7 mm). This LOD value means that the chip could detect 10.5 ng of sulfate. LOD values on vertical measurements were also similar, but large measurement errors from numerous outlier points yielded an R2 value of 0.735 and large average measurement standard deviations (36%).

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3