Author:
Deng Xiaofan,Li Jiujin,Dai Xiaoqing,Zhao Junfan,Deng Hang,Zhao Fan
Abstract
AbstractIn recent years, the rise in global warming has significantly increased forest fires, affecting the environment and economy. Predicting forest fire dynamics under climate change is now a crucial research field. To address this need, this study focuses on the impact of climate change on forest fires, with a particular focus on the fire dynamics in Yunnan Province. This study utilizes the RegCM regional climate model and the Canadian Fire Weather Index (FWI) to simulate and analyze forest fire dynamics in Yunnan Province from 2019 to 2033 under three climate scenarios: RCP2.6, RCP4.5, and RCP8.5. Findings indicate climate change will increase temperatures, alter humidity and wind speed, and reduce precipitation in Yunnan, extending the fire danger period, especially under RCP8.5 scenarios. The FWI values rise across Yunnan, particularly in the west under RCP2.6 and RCP8.5. The study concludes that future carbon emissions correlate with these changes, leading to more frequent, longer, and severe forest fires. This research is vital for managing and preventing forest fires in Yunnan, a region prone to such disasters.
Funder
Natural Science Foundation of China
the Yunnan Fundamental Research Projects, China
the Foundation of Key Laboratory of State Forestry and Grassland Administration on Forestry Ecological Big Data, Southwest Forestry University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献