Interaction of the fundamental frequencies of a torsional cantilever nanobeam and spring mass system single degree of freedom (SDOF) under axial load, including buckling

Author:

Moutlana Malesela K.ORCID,Adali Sarp

Abstract

AbstractIn this study we present the interactions of the fundamental frequencies of a nanomanufacturing coupled system by exploring the natural frequencies of the subsystems. These nanomanufacturing subsystems function in concert, e.g., a cantilever beam with spring-mass. The individual subsystems are studied under free vibration to generate the natural and buckling frequencies. These subsystems, when under free vibration, generate unique local natural frequencies that interact to form a unique global natural frequency. This allows for greater control and improved sensitivity for scanning and shaping nano surfaces, by allowing selective variation of the local frequency of one system to influence the global system frequencies. In this investigation, a nanobeam with arbitrary boundary conditions is used to model the system and the effects on the parameters of interest are studied. Euler–Bernoulli theory is applied in conjunction with Eringen’s theory of nonlocal continuum theory to model the small-scale effects due to the size of the beam under consideration. The coupled equations are solved using separation of variables for the local and global frequencies. The nanobeam is restrained with an adjustable torsional spring and pin at one end. The boundary condition at the free end is a spring-mass system with axial load. Altering the torsional, transverse spring stiffness and mass increases or decreases the natural frequencies. The motions of the beam and the tip-mass generates a frequency response during contact interactions. The tip response frequency is used to determine the maximum displacements (penetration depth) and accelerations (contact forces) in a sample during nanomanufacturing.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3