An investigation into the adverse effects of O2, SO2, and NOx on polyethyleneimine functional CO2 adsorbents

Author:

Li Kaimin,Jiang Jianguo

Abstract

AbstractIn this study, we investigated the influence of O2, SO2, and NOx on branched and linear polyethyleneimine (PEI) functional silica CO2 adsorbents (BPEI-SiO2 and LPEI-SiO2, respectively). O2 was much more likely to oxidize BPEI-SiO2, compared with LPEI-SiO2, to form C=O and C=N groups and led to a 23.0% decrease in the CO2 adsorption capacity after 990 min of cumulative contact with 10% O2. In contrast, LPEI-SiO2 lost only approximately 3.6% of its CO2 adsorption capacity, although O2 oxidized LPEI-SiO2 to form C=O groups. SO2 can cause severe degradation of BPEI-SiO2 and LPEI-SiO2 by forming heat-stable NH3+—and/or NH2+—containing adducts and by promoting the formation of urea linkages. After cumulative contact with 10, 50, and 200 ppm SO2 for 990 min, BPEI-SiO2 lost 18.2%, 61.4%, and 89.0% of its CO2 adsorption capacity, and LPEI-SiO2 lost 18.5%, 60.6%, and 78.5% of its CO2 adsorption capacity, respectively. NO2 at 10 ppm and NO at 200 ppm caused almost no loss in CO2 adsorption capacity after cumulative contact for 990 min, but both led to degradation of adsorbents. NO2 can cause irreversible formation of NH3+—and/or NH2+—containing adducts, acid products, N-nitro compounds (N–NO2), C-nitroso compounds (C–N=O), and C-nitro (C–NO2) compounds, and can promote the formation of urea linkages. NO can lead to the formation of NH3+—and/or NH2+—containing adducts and N-nitroso (N–N = O) compounds.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3