Fabrication of an erbium–ytterbium-doped waveguide amplifier at communication wavelengths for integrated optics applications

Author:

Mirhosseini Shaghayegh,Kazemikhah Payman,Aghababa Hossein,Kolahdouz Mohammadreza

Abstract

AbstractErbium–ytterbium-doped waveguide amplifiers provide a considerable gain at telecom wavelengths, low noise, nonlinearity, and compatibility with optical networks, making it an outstanding amplification module for telecommunication systems. This study reports on the fabrication of an optical waveguide amplifier for integrated optics. The signal can be amplified by using rare-earth dopings such as erbium (Er), which works at telecommunication wavelengths, i.e., 1.55 μm. Er-doped phosphate glass waveguides can be deposited using the sol–gel method, which is convenient for preparing active films on several substrates. The Er concentration was 1–2 × 1020/cm3. The confinement and the gain of the waveguide can be increased by reducing the width of the waveguide to 0.5 μm. In such a case, more than 1dB net gain can be achieved without additional pump power. The other material used as a dopant in optical amplifiers is ytterbium (Yb). For Er energy levels, a more significant pump intensity is necessary for inversion due to the limited absorption cross-section. This issue is solved by including a substance with a large absorption cross-section that transfers energy to Er. The Ag–Na ion exchange process is then used to fabricate the buried waveguide. In such a process, ions trade between the core material and the molten salt. Then, the waveguide is immersed in the molten salt. The fabricated waveguide has low loss, and a net gain of around 2 dB at a wavelength of approximately 1.55 μm in Er:Yb:Al: phospho silicate glass is achieved. The focus of the research is on the fabrication procedure (materials and methods) of the waveguide.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3