Photocatalytic water purification under visible light using carbon nitride materials and β-Bi2O3 immobilized on electrospun polyvinyl acetate fibers

Author:

Köwitsch Isabel,Schäfer Adrien,Hornig Dominik,Mehring MichaelORCID

Abstract

AbstractWe report on the immobilization of carbon nitride (CN) materials and β-Bi2O3 on electrospun polyvinyl acetate (PVAc) fiber substrates using a dispersion based dip coating process. The spinning process was optimized by variation of several parameters to finally obtain continuous droplet-free fibers at 15 kV and a flow rate of 50 µL min−1 using a needle with 1.2 mm diameter. The polymer substrates were coated with the β-Bi2O3 and CN materials, which were characterized using SEM and applied in the photocatalytic degradation of organic pollutants such as Rhodamine B (RhB), ethinyl estradiol (EE2) and triclosan using visible light irradiation. The pollutants were degraded with up to 50% of the initial concentration within 8 h. Different amounts of CN material were deposited to evaluate the photocatalytic activity per mass. Immobilized CN materials were shown to be of higher activity (2.0 × 10−10 mol mg−1 min−1) than β-Bi2O3 (1.3 × 10−10 mol mg−1 min−1) and the mixture CN/β-Bi2O3 (1.6 × 10−10 mol mg−1 min−1). Reference samples with CN particles partially embedded in the polymer fleece showed minor degradaton rates (18% RhB degradation within 8 h) as compared to coated fiber substrates (47% RhB degradation within 8 h). Minor leaching of the carbon nitride material and no leaching of β-Bi2O3 occurs as shown by NPOC (non purgeable organic carbon) and ICP-MS measurements.

Funder

European Social Fund

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3