A novel optimized design of a piezoelectric-driven 4-stage amplified compliant microgripper using a 2-step multi-objective algorithm

Author:

Haghshenas Gorgani HamidORCID,Shabani Sharif,Honarmand Mohammadmahdi

Abstract

Abstract Advancements in microscale technologies have prompted a demand for high precision micro-manipulation. Microgrippers are the primary means of conducting micro-scale operations, and they significantly affect the procedure's performance. This paper presents a novel optimized design for compliant microgrippers, intending to enhance functionality and durability. The mainframe of the proposed microgripper is based on a compact flexure-based compliant structure with four stages of movement amplification. Experiments were designed based on the L25 Taguchi orthogonal arrays. The experiments were conducted using the finite element method in Abaqus 6.14 workbench. Range of motion and maximum created mechanical stress are selected as the two fundamental goals of the optimization. A variety of designs are achieved using the proposed algorithm. The use of Analytical Hierarchy Process has led to the presentation of an efficient and well-defined algorithm to perform decisions. The decision process can be performed with regard to specific requirements of various applications. The presented design process of microgrippers has the potential for customized manufacturing for specific applications. Article Highlights Finding correlations between design parameters and outputs (Amplification factor & Stress), using Taguchi's method in design of experiments (DOE). Optimization of dimensional inputs using a multi-objective genetic algorithm process to achieve an optimal Pareto-front instead of a single design point. Selecting the desirable point on the optimal Pareto-front for specific applications using Analytic Hierarchy Process (AHP) to prevent possible decision-making errors.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Piezo-based Microgripper with Hybrid Grasping Modes for Versatile Micro-object Handling Tasks;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3