Productivity improvement in butt joining of thick stainless steel plates through the usage of activated TIG welding

Author:

Saha SumanORCID,Paul Bashab ChandraORCID,Das SantanuORCID

Abstract

AbstractActivated tungsten inert gas (A-TIG) welding is one variant of conventional TIG welding where a thin layer of suitable activating flux is deposited on the parent components prior to constituting the arc in order to harness enhanced penetration. Despite several benefits, industries are still reluctant in overwhelmingly using this new variant. This article attempts to highlight the productivity benefits in employing A-TIG welding either together with or superseding TIG welding during butt joining of 10-mm-thick AISI-316L austenitic stainless steel components. Initially, three single-component fluxes (Cr2O3, Fe2O3, and SiO2) are tested in forehand welding technique under varying currents but with straight polarity. Filler rod having similar metallurgical composition is also delivered during homogeneous welding. The extent of capability of each of the three fluxes is analysed by comparing the weld bead geometrical parameters (penetration, puddle width, and reinforcement) with the same obtained in conventional TIG welding under similar set of parameters. While Fe2O3 and SiO2 fluxes are found capable in enhancing penetration and reducing puddle width and heat affected zone, Cr2O3 flux failed to exhibit better performance. The article further demonstrates the time saving that can be obtained by adopting flux-assisted TIG for joining 10-mm-thick plates. When joining from both the faces is allowed, about 70% less time is desired if a combination of A-TIG and TIG is employed rather than using only TIG welding. If joining from only one face is allowed, then also usage of flux can reduce welding time by 33%.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3