Mechanical performance of lightweight ceramic structures via binder jetting of microspheres

Author:

Mummareddy BhargaviORCID,Burden Edward,Carrillo J. G.,Myers Kyle,MacDonald Eric,Cortes Pedro

Abstract

AbstractGeometrically-complex and lightweight ceramic parts manufactured via 3D printing are prospective structures that seem to provide excellent thermal, wear and dielectric performance. In the present work, binder jetted parts based on synthetic lightweight ceramic hollow microspheres were manufactured and evaluated under different testing conditions in order to characterize their mechanical performance. The resulting structures were assessed in terms of quasi-static flexural and compressive strength, and density. Furthermore, microscopy analyses highlighted the composition of the final structures and fracture mechanisms. The printed system mainly consisted of aluminum silicon dioxide, fly ash and traces of metal. The samples yielded similar strength as that achieved on conventional bulk-based 3D printed ceramic structures. It was observed that the strength of the printed microspheres increased by sintering the parts to near-fusion temperatures due to viscous flow of material during sintering. The combination of the proposed process and feedstock represents an attractive manufacturing method for fabricating lightweight structures for applications like composite tooling molds, electromagnetic devices, and biomedical implants.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3